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A two-dimensional unsteady transonic flow of a perfect gas with constant specific 
heats is considered, solutions being found in the form of perturbations from 
a uniform, sonic, isentropic flow. Longitudinal viscous stress terms are retained 
so that shock waves can be included. The case where the characteristic time of 
a temporal flow disturbance is large compared with the time taken by a sonic 
disturbance to traverse the transonic regime is studied. A similarity solution 
involving an arbitrary function of time is employed, such that the channel walls 
are in general not stationary. Solutions are presented for thick (shock fills 
transonic region) and thin (shock tends to a discontinuity) shock waves for both 
decelerating and accelerating channel flows. For the thin-shock case, both 
numerical and asymptotic solutions are given. Flow pictures illustrating varia- 
tions in shock position and structure as well as velocity distributions are shown 
for exponentially decreasing and for harmonic temporal flow disturbances. 

1. Introduction 
The study of unsteady transonic channel flows with shock waves has applica- 

tions in many technically important flow fields. For example, transonic flows 
with shocks occur under typical operating conditions in the channels between 
the blades in the stators and rotors in both the compressors (decelerating flow) 
and tnrbines (accelerating flow) of modern aircraft jet engines. Unsteadiness in 
the flow can arise from various causes such as non-uniform air inlet distributions, 
gusts, changes in the power setting, twisting and flexure of the blades, etc. 

Although solutions for unsteady transonic flows with shocks cannot be found 
in the literature, several steady-flow solutions have been presented. Notable 
among these, from the viewpoint of the present work, are those given by Kopy- 
stynski & Szaniawski (1965), Sichel (1966) and Ryzhov (1968). Kopystynski & 
Szaniawski, using a series expansion, found an apparently quasi-one-dimensional 
solution which is of considerable interest since both accelerating and decelerating 
flows can be considered. Sichel and Ryzhov found that inviscid similarity trans- 
formations worked also in viscous flows and were able to find two-dimensional 
solutions involving shocks with thickness of the order of the axial extent of the 
transonic region. It is the latter approach which is used in the present study, in 
that similarity transformations, extended to include unsteady effects, are 
employed. 
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The present work is an extension of work done previously on inviscid unsteady 
transonic channel flows (Adamson 1972a). It will be seen that the shock solu- 
tions essentially join two of the inviscid solutions found previously, and that the 
various characteristic time regimes of the disturbance shown previously hold 
also when shocks are considered. 

In the following analyses, the flow is assumed to  be two-dimensional, com- 
pressible and transonic; the gas is assumed to follow the perfect-gas law and 
t o  have constant specific heats. Upstream of the transonic region, the flow is 
taken to be irrotational. 

2. Derivation of equations 
The problem considered is that of perturbations from a uniform, sonic, two- 

dimensional stream flowing in the X direction. If the channel half-width at  the 
minimum area and the undisturbed flow velocity are denoted by z and a* re- 
spectively (the overbar denotes a dimensional quantity), then X and Y are co- 
ordinate distances made dimensionless with respect to z, and T is the time made 
dimensionless with respect to L/a*. The independent variables are stretched as 
follows, with the orders of the gauge parameters to be given later: 

x = Jx, 6 = zx/z, x = O(l) ,  

Y = €y) & = E,/L, Y = O(l) ,  
T = 7t, 7 = FCh/(E/Z*), t = O(1). 

Here, Ex and z, are lengths of the order of the physical extent of the transonic 
region in the X and Y directions, respectively, and pch is the characteristic time 
associated with the disturbance. Hence, x, y and t are of order unity in the 
unsteady transonic region. . 

Since the flow is transonic, 6 < e (i.e. Ex < L,) in general, and it is clear then 
that U,, U,,, i.e. that longitudinal stress terms are large compared with shear 
stress terms. Thus, it is seen that in so far as the first-order equations are con- 
cerned, only shock waves can be considered, not boundary layers. Furthermore, 
since the flow is transonic, the shocks are weak, the increase in entropy being of 
second order within and third order across the shocks. Hence, to first order, 
the flow is isentropic and a velocity potential function @ ( X ,  Y ,  T), where @ is 
made dimensionless with respect to  Ea*, can be defined as follows: 

(2) 

( 3 4  

( 3 b )  

@ ( X ,  Y ,  T) = X +E,J$(x,y,t) + ... . 

QX = U = i+El+,+ ... = ~+E,u ,+  ..., 
Here, El < 1, q5, = O(1) and 6is a t  most O(1). That is, 

= v = (E,S/s)$,+ ... = (E18/€)wl+ ...) 
where U and V are velocity components in the X and Y directions respectively. 
Thus El = O( U - 1 )  is a measure of the deviation of the flow velocity from its 
sonic value. Finally, u1 and w1 are perturbation velocity components. 

Expansions similar to the expansion for U ,  equation ( 3 a ) ,  may be written for 
the thermodynamic variables P, p and 9 (each made dimensionless with respect 
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to the corresponding variable in the undisturbed flow). If  these expansions, ( 3 )  
and (1)  are substituted into the conservation equations, the usual acoustic 
relations between the perturbations are found, i.e. 

The only change from the steady-flow relationships is the unsteady term in ( 4 b ) .  
In deriving (4), it has been assumed that at most the shock thickness is of the 
same order as the extent of the transonic region in the axial direction. That is, 
if z, is of the order of the thickness of a weak shock (Illingworth 1953), then 

where the Reynolds and Prandtl numbers are based on the longitudinal viscosity. 
The governing equation for $(x, y, t )  may be found by substituting the above 

expansions for the velocity components, the thermodynamic functions and the 
stretched variables into the general gasdynamic equation (i.e. including unsteady 
and viscous terms). In  deriving the equation, the following relationships are 
employed: 

€ = I ,  P = ( y + l ) E 1 ,  ( 6 a ,  b )  

Equation (6a) arises since the transonic region fills the channel; the relative 
orders of S and El indicated by (6 b )  must hold if the governing equation is to 
reduce to the usual two-dimensional steady-flow equation as7 --f 03. Equation (6c) 
defines k, as being of the order of the ratio of the thickness of a weak shock 
[equation (5 ) ]  to the axial extenb of the transonic region. Finally, I' is introduced 
for convenience. The governing equation for q5 may then be shown to be (Adamson 
1972b) 

s l  (7) - 9 , ~ . x + ~ v y - ~ ~ ~ - ~ ~ ~ t + k s  [h..+;~$,,, = 0. 
2 1 

The first four terms are those derived previously for inviscid unsteady flows 
(Adamson 1972a), while the last contains the effects of viscosity through the 
parameter k,. When k, = O(l),  Es = O(Ex); for this case, hereafter referred to  as 
the thick-shock case, the viscous terms must be retained. As IC, becomes smaller, 
which corresponds to the Reynolds number becoming larger, the effects of 
viscosity become small in the main part of the flow, being confined to a thinner 
and thinner shock region until k, = 0, when the shock is a discontinuity with 
inviscid flow upstream and downstream of it. The limiting case is referred to as 
the thin-shock case. Equation (7)  is the unsteady counterpart of the equation 
studied by Sichel (1966) in his analysis of steady viscous transonic flows. 

The same regimes for 7 in terms of S arise in the viscous case as were found in 
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the inviscid case (Adamson ’1972a). They are (i) T = 0(6),  (ii) 7 = O(1) and 
(iii) 7 = O(ij6).  Just as in the inviscid study, the third case is chosen for study; 
many physical problems associated with unsteady flows in jet engines fall into 
Chis time regime. Thus, for this study 

7 = (k6)-1, (8) 

where k is an arbitrary constant of order unity. Using (S), (3) and the irrotation- 
ality condition, one can write (7) entirely in terms of u,; thus 

~ S U l X X X  - (%x)2 - ~ 1 ~ 1 x x  + U1yy - 2kUlZt = 0. (9) 

Just as in the inviscid case (Adamson 1972a)) it can be shown that for the 
chosennegime, equation (8)) the equation for the wall may bewritten in stretched 
variables as 

Yw = Y a  + (7 + 1) E2,fw(G t ) ,  afwlax = v,,, (10a, b )  

where ya is a constant and where (fw)t drops out of ( l o b )  because for this 7 
regime 7 B 6. Equation ( l o b )  expresses the fact that  the wall is instantaneously 
a streamline. fw is a function of t as well as x since in general the wall may be 
moving. Finally, it can be shown that E* is a constant, so that the sonic line is 
defined by u1 = 0. 

3. Similarity solutions 
Solutions of (9) may be found by employing the same similarity transformation 

as was used for the inviscid problem (Adamson 1972a). This transformation is 
an extension of the one used by Tomotika & Tamada (1950) for inviscid and 
Sichel (1966) for viscous channel flows. It is worthwhile to point out again that 
similarity solutions are not general in that one cannot impose arbitrary boundary 
and initial conditions. In  this case, however, these conditions correspond to  
those associated with channel flows, so the result is a solution which is very 
instructive but which involves a minimum of mathematical and computational 
difficulties. The transformation is written as follows : 

s = x+by2+b( t ) ,  ( I l a )  

( I l b )  ZC, = Z(S) + 4b2y2 - 2k/3’, 

where b is a constant, P(t )  is an arbitrary function of time and the prime on /3 
indicates the derivative with respect to time. Using the irrotationality condition 
ulw = vlX, one can show that 

v1 = 2byz + 8bZyx + ;b3y3 + y(8b2P - 4k2/3”) 

kSz”’ - ZZ” - (2‘ - 4b) (2’ + 2b) = 0, 

(12) 

(13) 

where a prime denotes differentiation with respect to s. Thus, a similarity solution 
results for the viscous as well as the inviscid unsteady transonic channel flow; 
the most ineresting point of the transformation is that an arbitrary function of 

and finally that (9) becomes 
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time P(t)  is involved. The form of p is related to  the initial and boundary con- 
ditions. A random disturbance which dies out or a cyclic disturbance may be 
represented by an exponential or a sinusoidal form for p, respectively. For any 
chosen p, there is some wall motion, and it is not possible to isolate the effects 
of the moving wall or the variable incoming stream. 

Equation (13) may be integrated once to  give 

ksz" - ZZ' + 2 b ~  + 8b2s = 0, (14) 

where the constant of integration has been absorbed in s, i.e. x can be measured 
from any arbitrary location. 

When ks = 0, the flow can be considered to be either completely inviscid or 
inviscid up to and downstream of an infinitesimally thin shock. If the former case 
is considered first, the solutions are those given by Tomotika & Tamada (1950) 
for steady flows and exploited later for unsteady flows (Adamson 1972~).  Thus 

(15) (Z - 4 b ~ ) ~  (Z + 2bs) = a3/4b3, 

where a is a constant of integration which characterizes the inviscid solution 
curves, i.e. a = constant along a given solution curve. 

Equation (14) is essentially the equation studied by Sichel(l966) in his analysis 
of shocks in accelerating channel flows, where k, = O(1). Here we consider the 
unsteady counterparts of his solutions. I n  addition, solutions for decelerating 
flows with k, = O(i) ,  both steady and unsteady, and solutions for ks < 1 for 
accelerating and declerating flows will be presented. 

Equation (14) has been solved both numerically and using asymptotic methods. 
These solutions are discussed in the following sections. 

3.1. Numerical solutions: thick shocks (ks = O(1)) 

Numerical solutions to (14) are shown in figure 1. The dashed curves are inviscid 
solutions, equation (15), for various values of a, the subscripts u and d on CL 

denoting upstream and downstream (of the shock) conditions respectively. Since, 
from (1  1 b) ,  u1 = z along the axis of a steady flow, it is seen that inviscid solu- 
tions for a > 0 correspond to flows everywhere supersonic, through a converging 
or diverging channel; solutions for a < 0 correspond to flows subsonic along 
the axis, but with supersonic pockets away from the axis (Taylor flow). 

Curve (a) in figure 1 is a numerical solution of (14) for ks = 1 and b = 4 which 
starts close to the inviscid acclerating-flow solution z = 4bs (Meyer flow) and then 
jumps, through a shock, t o  a downstream inviscid-flow solution corresponding 
to ad = - 2.82. This solution is similar t o  those shown by Sichel(l966) for steady 
flow. Upon transforming the solution to physical co-ordinates, for various func- 
tions p, corresponding unsteady flows with thick shocks can be considered. Such 
flow pictures will be shown later. Solution (a) was found by starting the solution 
near z = 4bs with slope near 4b. The asymptotic downstream inviscid curve was 
found by numerically matching the solution with inviscid solutions and cal- 
culating the a indicated. 

It was reasoned that as for the accelerating flows studied by Sichel (1966) it 
should be possible to consider decelerating supersonic flows with shocks, and 
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FIGURE I. z against s, showing inviscid solutions [equation (15)] for various a (dashed 
curves) and solutions to the viscous equation (14) for k, = 1, b = t .  Solution ( a )  (shock in 
accelerating flow) starts asymptotic to z = 4bs and ends asymptotic to the ad = - 2.82 
inviscid solution. Solution ( b )  (shock in decelerating flow) starts asymptotic to a, = 1.46 and 
ends asymptotic to ad = - 3.33 inviscid solutions. 

such turned out to  be the case. Curve (b )  in figure 1 thus illustrates a flow which 
starts as a decelerating inviscid supersonic flow which reaches a minimum velocity, 
accelerates slightly and then jumps, through a shock, to a downstream inviscid- 
flow solution and continues to decelerate. The calculation was again made for 
k, = 1 and b = 4. It was started a t  a given point with a given slope in the super- 
sonic region and matched numerically with downstream inviscid solutions to 
obtain ad. Then backward integration was carried out from the initial point and 
a, was found by comparison with inviscid solutions for a > 0. The reason why 
backward integration is necessary will be discussed later. 

It is clear that, in both cases illustrated in figure 1, the position of the shock 
depends on the values of a being considered and hence on downstream conditions 
in the case of simple acclerating flows and on both downstream and upstream 
conditions in the case of decelerating flows. 

3.2. Thin-shock solutions (lc, = 0) 

When lcs = O(l),  then by (6c) and ( 6 b ) ,  Re = O(ET2). Por typical values of E,, 
this means that Re is at most of order 102-103, which is very small compared, say, 
with the Re found in typical turbomachines. Thus, it is necessary to study cases 
where Ic, 4 I. I n  this section, we first consider the case where Ic, has gone to the 
limiting value of zero, so that the shock is a discontinuity imbedded in an other- 
wise inviscid transonic flow. I n  the next subsection, the case where kg < 1, but 
not zero, is considered. 
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The case ks = 0 can be studied by considering the general equations for an 
oblique shock which is itself moving with time. Since for the T regime con- 
sidered the first-order conservation equations do not contain any time derivatives, 
it is clear that  the jump conditions across the shock, relative to the shock, will 
be the familiar steady jump conditions. If expansions (3) for the velocity com- 
ponents are substituted into the jump conditions and the similarity solutions 
(1 I b )  and (12) are substituted for the velocity perturbations, it is found that the 
similarity solution holds across the shock and that the jump condition and shock- 
wave velocity U, are respectively (Adamson 1972b) 

Equation (16a) is thus a generalized jump condition corresponding to  that across 
a weak normal shock, where ud = -uu, u being the perturbation velocity. 
Finally, it is also found that the shock is along a line s = constant. 

The jump condition (16a) and the inviscid solution (15) can be used to  derive 
an equation for the position of the shock in terms of the upstream and downstream 
a values. Thus, if so denotes the value of s a t  the shock location in the z, s plane, 
then it can be shown (Adamson 1972b) that  a t  the shock 

2, = (.;-&)*/2b = -zd ,  

for ladl = a,, (17c) 
(18) where 

Equations (1 7)  and (18) hold not only for the case of decelerating flow, where a, 
and a d  both exist, but also for accelerating flow. I n  the latter case, a, = 0. 

The solutions given in this section hold, of course, for both steady and un- 
steady flow, the differences between the two arising only as the transformation is 
made back to the physical flow. Typical solutions in the z, s plane are shown in 
figure 2. Again, the dashed lines show inviscid solutions for the indicated values 
of a, and the solid lines show solutions including shocks. Thus, curve (a)  shows 
a solution for an accelerating flow which starts along z = 4bs and then jumps, 
through a shock, to  an inviscid flow corresponding to a d  = - 0.10. Curve ( b )  is 
the solution for a decelerating supersonic flow which first decelerates, then begins 
to accelerate along an a, = 0.2 inviscid-flow solution and then jumps, through a 
shock, to  an ad = - 0.40 inviscid curve and continues to decelerate. 

w = cos-1 [la: + a: 1 /(a: - a:)]. 

3.3. Thin-shock solutions (Ic,  < 1) 

Here, we consider the case where the shock thickness is small compared with the 
axial extent of the transonic region, but not negligible; k, < I. I n  this case, 
referring to (la), the problem is a classical singular perturbation problem, and 
the method of matched asymptotic expansions (Van Dyke 1964; Cole 1965) can 
be used. This approach is more desirable than the previously mentioned method 
of obtaining numerical solutions because the problem is in general a two-point 
boundary-value problem. Thak is, one can in general choose both the inviscid 
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FIGURE 2. z against s, showing inviscid solutions [equation (15)] for various a (dashed curves) 
and solutions for flows with shocks in the limit k ,  = 0 (shock infinitesimally thin). Solution 
( a )  is a shock in accelerating flow; solution ( b ) ,  a shock in decelerating flow. 

solutions to  which the solution is asymptotic upstream and downstream of the 
shock. I n  so far as numerical solutions are concerned, this means a trial-and-error 
procedure involving various starting values. On the other hand, approximate 
analytical expansions allow one to form an upstream asymptotic expansion, 
the constants of which are written in terms of a, and ad. This asymptotic ex- 
pansion may then be used to  start a numerical solution which will start and finish 
asymptotic to  the desired inviscid curves. Alternatively, the solutions found may 
be used throughout the whole flow region, if approximate solutions valid to 
a given order of approximation are acceptable in the problem a t  hand. 

In  the following the flow is divided into three regions: the inner shock region 
and the two outer regions upstream and downstream of the shock wave. The 
solutions found are asymptotic expansions, valid in the limit as ks --f 0. I n  the 
interests of brevity, and because the analysis is relatively straightforward, only 
a brief outline of t h e  analysis is given here. Details may be found in Adamson 
( I972  b ) .  

Inner region. If, again, so is defined as the value of s a t  which the shock exists 
in the limit as Ic, -+ 0, then following Sichel(1971) s is stretched and x is expanded 
as follows in the inner shock region: 

s = (s-so)/Ic,, (19a) 

(19b) x(s)  = g(5) = go($) i- ksg#) + . . . . 
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The governing equations for go and g,, found by substituting (19) into (14), are 

g;[ -g,g; = 0, ( 2 0 a )  

(20b)  gr - (glgo)' + 2bgo + 8b2so = 0, 
where a prime indicates differentiation with respect to S. Referring to ( 2 0 ) ,  it 
is seen that the solution in the inner region is simply a perturbation from the 
Taylor (1910)  weak-shock solution. Thus, solving ( 2 0 )  and substituting the 
results into (19b), one finds for g(S) 

9 = - El tanh P + ks(coshi)-2 In cosh i (sinh F cosh i + i )  [:: 
- $(sinh i cosh i - i )  - 

+- +- (sinbi coshi+ i} +gl(0) + . . . , -? [ P sinh i cosh i - - 1 sinh2i i2) E3 
2 2 2  

( 2 1 4  
i = gclS+f2. (21  b )  

It is seen that, in the limit as IC, + 0, equation (16u) is recovered, as should be the 
case. The asymptotic expansions for g(s") needed for matching are, as S -+ k m 
(ie. i --f f co), . -  

g =  T~l[1-2exp(T2P)+. . . ]+ks  

1 Pexp(T2i )+  ... +..., ( 2 2 )  

where, in each case, the upper sign holds for the limit as S -+ + co and the lower 
as S -+ - co, and where an exponentially small term is retained in g, for numerical 
work to be considered later. As may be seen in (22 ) ,  gl(0) does not appear and 
thus is not obtained from matching to this order, just as E2 (in go) is not found by 
matching to zeroth order. This simply means that the shock location (e.g. the 
point at  which g = 0) is known to the same order of approximation as the solu- 
tions. 

Outer region. The outer regions are handled in general by assuming a solution 
which is asymptotic to an inviscid solution. As will be seen, this covers all cases 
for which 1.1 > 0, but is not valid for the single important case a = 0, where the 
inviscid solution is zi = 4bs (Meyer flow). 

In  general the solution is of the form 

2 = z&) + IC,z,(s) + . . . . 

- Z ~ Z ;  + 2b2i + 8b2s = 0, 

- ( x ~ x ~ ) '  + 2bz1 + Z; = 0. 

( 2 3 )  

( 2 4 a )  

( 2 4 b )  
Thus, xi is the solution to the inviscid equation (equation ( 1 4 )  with IC, = 0) ,  
and solutions for xi are given by (15), with a = constant. The solution for z1 

If ( 2 3 )  is substituted into (14 ) ,  the governing equations for xi and z1 are found to be 

24-2 
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- zi(so)/2b 

1.00 
0.50 
0.00 

- 0.50 
- 1.00 
- 1.50 
- 2.00 

4 8 0 )  

0 
1.331523 
2.059548 
2.620750 
3.068191 
3.414208 
3.625950 

TABLE 1. Value of integral I (so)  for b = 8 

where the integration is carried out from so t o  s to facilitate expansions for s 
near so. It can be seen from ( 2 5 )  that, as was mentioned above, this general solu- 
tion is not valid for xi = 4bs. 

In  order to match solutions, it is necessary to find expansions for xi and x1 
both for s near so and for (sI B 1.  These expansions are as follows. 

For s - so < 1, the expansion for x ,  written now in terms of the inner variable s" 
for ease of matching, is 

z = A+k,(B~+xl(so) )+O(k ,2) ,  (26) 

where A = Zi(SrI) ,  P a )  

B = z;(s~) = 2b + 8b2s0/A. (27 b)  

Equation (26) is the general solution which may be specialized by using A,, B, 
and [zi(so)], (upstream values) or A,, B, and [zi(sO)], (downstream values). 

For ( $ 1  B 1,  the expansion for z is 

(28) 
x [z1(s0)A (KB) 4b-B 4 

where (29) 

Typical values for I(so) as a function of the lower limit are given in table 1. Again, 
(28) is the general solution; specific solutions upstream ( s  + - 00) or downstream 
(s + a) of the shock are obtained by using the proper upstream or downstream 
values of A ,  B,  zl(so), a and I(so).  

It is seen in (28) that both the second term of the inviscid expansion and the 
fist-order term due to viscous effects tend to zero as r2. Thus, it would be possible 
to consider a case where the viscous solution would not tend to this inviscid 
solution before approaching - 2bs. However, the problem considered is that in 
which solutions tend to the inviscid solutions (a = constant) both upstream and 
downstream of the shock; for example, when ks = 0, only inviscid solutions 
upstream and downstream of the shock are involved. Hence, the boundary 
conditions here are that the solutions become asymptotic to inviscid solutions 
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before they become asymptotic to z = -2bs, for any a. Thus, both upstream 
and downstream of the shock, 

where specific upstream or downstream values are used for A ,  B and I(so). With 
the upstream and downstream values of zl(so) known, the solution (25)  for z1 
may be written in terms of known quantities; in particular, all constants in the 
expansion (26)  near s = so are known before matching. Matching serves to  locate 
the shock and set the parameters associated with the shock structure (inner 
solution). 

Before matching, it is necessary to consider the outer solution not covered by 
the preceding analysis. As was illustrated previously, this singular behaviour 
occurs when the inviscid upstream flow is the so-called Meyer flow where zi = 2bs. 
Physically, the reason for this occurrence is the fact that, because the inviscid- 
flow solution has a constant acceleration, u,, = z$ = 0; even if longitudinal 
viscosity is accounted for, no viscous effects from the basic solution are seen 
ahead of the shock. As a result, limit expansion techniques simply do not give 
valid solutions; perturbations from xi involve exponentially rather than alge- 
braically small terms. Since terms of order k, are being oonsidered, no further 
computations are really necessary as far as the asymptotic solutions are con- 
cerned. However, in order to start a numerical solution upstream of the shock, 
an asymptotic expansion is needed because, in the region where z is slightly less 
than 4bs, backward integration from the shock is unstable. A solution may be 
found using a two-variable approach. Details are given in Adamson (19723). The 
asymptotic forms for z necessary for matching with the inner solution (in terms 
of 8) and for s large and negative are found to be, respectively, 

z = 4bs,+ks4bs"+$(lc , )k~exp(2bs~/k,)8,(2/n)~ exp (4bs0S) (2b*s0)-*+ ..., ( 3 1 a )  
z = 4bs - exp ( - 2bsi/ks) Sb2st( - 2s)-* exp [ - (I + 2-41(s0))] 

where 20(ks) and e2 are parameters found later by matching. 
Matching. I n  this subsection matching between the inner (shock) and outer 

(inviscid plus small viscous effects) solutions is demonstrated for two problems. 
The first is the so-called decelerating-flow problem where the flow upstream 
of the shock is everywhere supersonic, corresponding to an inviscid-flow solution 
with a = au > 0, and the flow downstream is subsonic, corresponding to an 
inviscid-flow solution with a = ad < 0. The second is the so-called accelerating- 
flow problem where the flow upstream of the shock is a simple Meyer flow (a = 0, 
zi = 4bs) and the flow downstream of the shock is subsonic (a = ad < 0). 
Reference is made to figure 1, where comparable solutions, but for k, = 1,  are 
shown. 

For the decelerating-flow problem, comparison of (22)  and (26)  both upstream 
(3 + - co) and downstream (s" -f 00) of the shock leads to the following relations, 
where so is given by (17)  : 

(32a)  
(23+ [8b2solA1),, = %,a, (32b)  

x [I - 3ks/32b( - 8)2 + ...I, (31 b )  

El = A,  = -Aa,  
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For the acclerating-flow problem, (22) is matched with (31a) upstream of the 
shock (Q --f - co) and with ( 2 6 )  downstream of the shock (s" --f 00). The results are 

El = 4bs0 = A,  = - A d ,  

k?o(k,) k$ = exp ( - 2bs3kS),  

C2 = - 8 d b*si exp (2E2), 

c2 = - *[ 2-%I(so) + 11, 

4E3 = In 2/so + [z1(sO)ld. 
Thus, one can find all the constants for the solutions in the inner and outer 

regions for either problem and form composite expansions, valid for the entire 
region, if desired. However, it is simpler to integrate the original differential 
equation (14) numerically, using asymptotic solutions to compute starting con- 
ditions for desired initial and final inviscid curves. 

4. Numerical computations for x(s)  (k,  < 1) 

It is known from the previous section that the outer upstream solution is 
independent of any shock parameters, in the case of decelerating flow. Hence, if 
one is to find an asymptotic form to start a numerical solution exhibiting the 
desired shock conditions, the inner solution must be employed in the overlap 
region, where both inner and outer solutions are valid. Moreoever, the starting- 
point must be such that numerically the asymptotic form is still valid, but on 
the other hand, the exponential function which gives the first effects of the shock 
is not only non-negligible, but also larger than the terms neglected. Using ( 2 2 )  
(for Q +- co) and (32), these conditions may be stated as follows: 

2A, exp (A,s" + 2E.J = FkS(B,3 + [zl(so)lu), (34a) 

(A,S+ 2E2)2 -g 2A$/Pk,B,, (34b)  

where F < I is an arbitrary factor. For proper values of F ,  the solution is 
insensitive to small variations in F ;  in the examples to be shown, P = 0.1 proved 
to be such a value. Equations (34) are used to find a starting value for s" and thus s. 
Then, corresponding values €or z and x' are found using (22). Numerical integra- 
tion is carried out both forwards and backwards from the starting-point. Such 
a solution cannot be obtained by starting forward integration at a large and 
negative s, because of the obvious local instability of (14), as evidenced by the 
shock solutions; such shock-like behaviour can be caused by any small error. 
On the other hand, backward integration upstream of the shock is stable. 

and k, = 

with b = 9. Since u1 = z along the axis of a steady channel flow, these solutions 
Typical solutions for x(s )  are shown in figure 3 for k, = 
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FIGURE 3. z against s; solutions for decelerating flow with shock, for 
a, = 0.3, ad = - 0.7 and various k,. 

show the change in steady shock structure as the Reynolds number increases 
(k, decreases). The location of the shock is governed by the values of and ad 
chosen. 

I n  the case of accelerating flow, since exponential terms in the inner shock 
solution are matched with corresponding terms in the outer upstream solution, 
information concerning the shock location is carried in the outer upstream solu- 
tion, and it may be used t o  start solutions at  any point desired. For the calcula- 
tions shown here, the asymptotic solution for s large and negative [equation 
(31 b ) ]  was chosen for computation of starting values. Typical calculations for 
z(s) are shown in figure 4, where again b = 4 and k, = and 10-3. Thus, the 
solutions in this form show the change in steady-flow shock structure along the 
centre-line of a channel flow, as the Reynolds number increases. The large circles 
show points calculated using the asymptotic expansions; the agreement with 
the numerical solutions is seen to be quite good. 
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FIGURE 4. z against s; solutions for accelerating flow with shock, for ad = - 0.4 and various 
k,. .,points calculated using asymptotic expansions for k,  = 0.01 [equations (31) and (23)]. 

5. Flow-field calculations 
The first step in the flow-field calculations is to  obtain x(s ) .  Then, the perturba- 

tion velocity components can be obtained as functions of x, y and t from (1 1) and 
(12). Finally, the wall and streamline co-ordinates may be obtained by combining 
the integral of ( l o b )  with ( 1 0 ~ ) .  A general integral of ( l o b )  can be found by 
using (14) to replace 2bx in w, [see equation (12)]. If this result is substituted for 
f, in (lOa), then the equation which holds for the wall or streamline is, in stretched 
co-ordinates, 

(Yb2y2, + 4k2p”) (x - ..))I , (35) 

where the subscript a here refers to the initial point of the calculation. In  this 
calculation, then, since y varies from ya by only a small quantity, 

8, = x,+byi+p(t), = x+by:+P(t), 2, = ~(8,). (36a ,b , c )  
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FIG- 6. Flow pioturea for thin shook in unsteady deoelerating flow. k, = 0.01, a,, = 0.60, 
a,, = - 0.70, b = +, k = 1, y = 14, El = 0.1, B = &e-at (steadydate flow 86 t + Q), see (o).) 
-, streamline; -, isotaoh. (a;) t = 0, ( b )  t = 0.36, (0 )  t = Q), ahowing overall wall and 
streamline variation. 
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Shock wave 

/ / / / / / / A ” ’  
/’A 

t=O 1 

- 1.0 - 0.5 0 0.5 1 -0 

Xpi 

F m m  6. Flow pictures corresponding to solution (a) in figure 2, an infinite~hdy thin 
shock imbedded in unsteady eccelemthg flow. k, = 0, ad = - 0.10, b = 4, k = I, = 1.4, 
1, = 0.1, /3 = )e--lt (steady-state flow 88 t --f m, see (c)). -, streamline; - , ieottwh. 
(a) t = 0, ( b )  t = 0.36, (c) t = m, showing overall wall and streamline vdt ion .  
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FIGURES 7 (a ) - ( c ) .  For legend see p. 380. 

In  general, x, and y,  can be functions of time; in the flow pictures shown here, 
they are calculated as follows. When Ic, is not zero and a continuous x ( s )  exists, 
x, and y ,  are the co-ordinates of the minimum of yw (or ysI;) €or the corresponding 
steady-state case (,8 = 0). Thus, x, and y, are constants and any wall motions are 
such that the wall is pinned at  this point. When Ic, = 0, the values of x, and ya 
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FIGURE 7. Flow pictures corresponding to solution (b )  in figure 2, an infinitesimally thin 
shock imbedded in unsteady decelerating flow. k, = 0, u, = 0.2, ad = - 0.4, b = 4, k = 1, 
y = 1.4, E, = 0.1, p = *sin2t (cyclic disturbance). +, streamline; - , isotach. (a )  
t = - $T, ( b )  t = -&T, (c) t = 0, ( d )  t = &n, (e) t = in, showing overall wall and streamline 
variation. 

upstream of the shock are calculated in exactly the same way. Then the values of 
x: and y a t  the intersection of the shock and wall (or streamline) are used for the 
calculations downstream of the shock, where z has jumped to a subsonic value. 
These latter x, and ya are thus time dependent. 

Flow pictures illustrating the kinds of calculations which can be made are 
shown in figures 5-7. Figures 5 ( a ) ,  (b )  and (c) show a sequence of solutions 
for /3 = $e2-t, i.e. an exponentially decreasing disturbance, in a decelerating 
flow (a, = 0.50, ad = -0.70), for k = The z(s)  solution is similar to that 
shown in figure 3. Because p + 0 as t --f co, figure 5 (c) is the steady-state flow 
picture for the given parameters. Although the shock is quite thin, the structure, 
and in fact temporal variations in structure and position, can be seen quite 
clearly. 

Figures 6 (a) ,  ( b )  and (c) show a sequence of flow pictures, again for /3 = $e-zt 
but now for an acclerating flow (ad = - O - l O ) ,  with ks = 0; the z(s) solution is 
curve (a )  in figure 2. I n  this case, the shock is a discontinuity imbedded in the 
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flow. I n  figure 6 (a) ,  it is seen that the flow immediately downstream of the normal 
part of the wave is supersonic. This apparently anomalous behaviour is explained 
by recalling that the shock is moving also and that, relative to the shock, the 
proper subsonic flow exists in this region. This is borne out by consideration of 
figure 6 ( c ) ,  the steady-state solution for the given parameters. 

Finally, figures 7 (a) ,  (b),  ( c ) ,  ( d )  and ( e )  show a sequence of flow pictures for 
p = isin2t (cyclic disturbance) in a decelerating flow (a, - 0.2, ad = - 0.4), for 
k, = 0. The z(s)  solution is curve (b) in figure 2. A most interesting feature of this 
flow is the occurrence of a subsonic pocket in the supersonic flow ahead of the 
shock (figures 7 b ,  c ,  d) .  

I n  figures 5 ( c ) ,  6 (c) and 7 ( e ) ,  the overall variation of the walls and streamlines 
is shown. That is, as was mentioned previously, the boundary conditions are 
affected by the choice of p ,  in this similarity solution. This motion can be em- 
phasized or minimized by the choice of parameters in p. All the flow pictures show 
solutions for the upper half-plane of a symmetrical channel flow; since for the 
time regime studied the wall is instantaneously a streamline, the flow through an 
asymmetric channel corresponds to  the flow between the wall and the streamline 
shown. Finally, it should be mentioned that several other flow examples, in- 
cluding results for other values of ks, are shown in Adamson (19723). 

6. Discussion 
The general features of unsteady transonic channel flow with shock waves can 

be studied relatively simply with the present similarity solutions. Thus, the 
variation of the shock position and structure as well as the behaviour of the flow 
upstream and downstream of the shock can be analysed as a function of time for 
various flow disturbances. I n  addition, the effects of the Reynolds number on 
structure can be studied for steady and unsteady flows. Finally, both decelerating 
and accelerating channel flows can be considered. On the other hand, these solu- 
tions suffer from the fact that only special wall shapes can be considered and that 
the walls move with time. Furthermore, because the wall is instantaneously a 
streamline, it goes through a small change in slope where the wall and oblique 
shock intersect; this effect is too small to be seen to the scale of the drawings, but 
it exists, nevertheless. As a result of this change in channel shape, there is a small 
change in pressure distribution downstream of the shock. 

It is clear from the above remarks that, in so far as direct applications are con- 
cerned, attention should be concentrated upon consideration of flows where the 
wall shape is specified. Such solutions evidently cannot be given by similarity 
solutions. Nevertheless, the similarity solutions shown here are extremely useful 
as a means of illustrating fundamental flow features in unsteady transonic flow. 
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